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Abstract—Compressive sensing makes it possible to reconstruct
images from severely underdetermined linear systems. For X-
ray CT, this can allow high-quality images to be reconstructed
from projections along few angles, reducing patient dose, as
well as enable other forms of limited-view tomography such
as tomosynthesis. Many previous results have shown that using
nonconvex optimization can greatly improve the results obtained
from compressive sensing, and several efficient algorithms have
been developed for this purpose. In this paper, we examine some
recent algorithms for CT image reconstruction that solve non-
convex optimization problems, and compare their reconstruction
performance and computational efficiency.

I. INTRODUCTION

The chief result of compressive sensing (CS) [1], [2] is that
we can reconstruct images from very few measurements by
exploiting sparsity. Most CS research applies only to linear
measurements, which have to satisfy an incoherence property.
Consequently, X-ray computed tomography (CT) has been a
natural application area for CS [3]–[8]: it is well approximated
by a linear model, and the Fourier-slice theorem [9] suggests
that radiographic measurements are roughly tantamount to
sampling in the Fourier domain.

The most common approach to CS has been the use of
convex optimization. In particular, the `1 norm can be an
effective penalty function for promoting sparse solutions to op-
timization problems, while providing the algorithmic benefits
of being a convex function. However, many results [6], [10]–
[17] have shown improved results using nonconvex penalty
functions instead. For X-ray CT, the potential benefits of using
nonconvex optimization include reconstruction using fewer
radiographic views, and improved robustness to noise, which
would allow the total radiation dose to be decreased.

Image reconstruction using CS necessitates the use of
iterative algorithms, which can be computationally expensive.
As a result, there has been much research in the development
of efficient algorithms for CS. Many algorithms for convex
optimization have been extended to the nonconvex case [10],
[12], [13], [16]. In this paper, we compare a selection of
three such algorithms to a synthetic problem in X-ray CT
image reconstruction. We discuss these algorithms and issues
regarding their implementation in Sec. II. We compare in
Sec. III-A the ability of the algorithms to reconstruct a breast
tissue phantom from ideal, noise-free data, as well as their
efficiency, to assess their potential abilities in reconstructing

images from limited views. In Sec. III-B, we consider the case
of noisy data, to test algorithm robustness and efficiency.

II. THREE ALGORITHMS FOR EXPLOITING GRADIENT
SPARSITY

We will consider the task of reconstructing a synthetic
breast tissue phantom (see Fig. 2). Although this phantom has
complex edges, its gradient is still fairly sparse. Our approach
will be to exploit this sparsity by means of optimization
problems designed to promote a sparse gradient. These will
take one of the following two forms:

min
x
G(∇x) + µ

2 ‖Ax− b‖22; or (1)

min
x
G(∇x) subject to ‖Ax− b‖2 ≤ σ. (2)

Here G will be one of several penalty functions whose
minimizers tend to be sparse. The best-known example is the
`1 norm, G(x) = ‖x‖1 =

∑N
i=1 |xi|, in which case G(∇x) is

the total variation (TV) of x. We seek to reconstruct x ∈ RN ,
which contains the attenuation values at each pixel. Our ∇
is a discrete approximation of the continuous gradient. The
radiographic data are stored in b, and A is the 2-D fanbeam
transform. The parameters µ or σ balance the competing
effects of regularization of the image x, and consistency of
the measurements Ax with the data b. Although problems (1)
and (2) are equivalent (for corresponding choices of µ and σ),
in practice it is easier to select σ, as this corresponds to the
combined effects of noise and model inaccuracy, while µ does
not have a direct, physical interpretation.

A. Iteratively reweighted least squares

The origins of iteratively reweighted least squares (IRLS)
methods go back to at least the 1960s [18]. It was first applied
to (1) in the case of TV by Vogel and Oman [19]. We will
apply the method to the case of the `p norm: G(x) = ‖x‖pp =∑
i |xi|p, where 0 < p < 1 [20]. The idea is to approximate

the penalty function by a weighted quadratic function, using
the previous iterate to compute the weights:

‖∇x‖pp ≈
N∑
i=1

wni |(∇x)i|2, (3)

where at the nth iteration, wni =
(√
|(∇xn)i|2 + ε

)p−2
. We

introduce ε > 0 to avoid division by zero. Substituting (3)
into (1), we obtain a quadratic optimization problem, which



results in a linear system. Manipulation of this system in the
manner done in [19] produces an iteration that has a structural
resemblance to a quasi-Newton method:(
∇T diag(wn)∇+ µATA

)(
xn+1 − xn

)
= µATb−

(
∇T diag(wn)∇+ µATA

)
xn. (4)

Using a larger value of ε than needed to avoid division
by zero can make the linear system in (4) better conditioned,
which makes the iteration faster. If ε is too large, this effect
can come at the expense of accuracy of the solution. A con-
tinuation strategy, where ε is initially large and then decreased
as the iteration proceeds, can be used to balance these issues.
It also turns out that such a strategy can help the iteration
avoid local minima when p < 1 [12]. Heuristically, the local
minima are smoothed away when ε is large, and then when
it is decreased and local minima re-appear, the iteration can
already be in the right basin of convergence. Convergence has
only been established in the absence of our analysis operator
∇, and then only to a local minimizer when p < 1 [21].

B. Alternating direction method of multipliers

The alternating direction, method of multipliers (ADMM)
algorithm dates to the 1970s [22], [23]. It was re-discovered
in the context of image processing in 2008 [24], [25], and
generalized to the nonconvex case in [16]. Applied to (1),
we introduce a variable w to take the place of ∇x, and a
term penalizing their difference. This decomposes the problem
into two, much simpler subproblems. In order to enforce
convergence of w to ∇x, we employ the method of multipliers
[26], [27], and introduce a dual variable Λ, to which the
residual is added at each iteration. In the noise-free case, we
can do the same to enforce Ax = b at convergence. The
optimization problem now takes the following form:

min
w,x

G(w) + 1
2λ‖w −∇x− Λ‖+ µ

2 ‖Ax− b− Λ2‖22, (5)

where we omit Λ2 in the noisy case. The iteration becomes:

Solve ( 1
λ∇

T∇+ µATA)xn+1 (6)

= 1
λ∇

T (wn − Λn2 ) + µAT (b + Λn1 ), (7)

wn+1 = Sλ(∇xn+1 + Λn2 ), (8)

Λn+1 = Λn + γ(b−Axn+1), (9)

Λn+1
2 = Λn2 + γ(∇xn+1 −wn+1). (10)

Here γ is a parameter that can be used to accelerate the method
of multipliers by using γ > 1. In the convex case, it is known
that γ can be as large as (

√
5 + 1)/2 ≈ 1.618 [28]. In this

paper we use γ = 1.6, giving us guaranteed convergence when
p = 1, with only empirically observed convergence when p <
1.

In (8), Sλ is the proximal mapping of G, defined as follows:

Sλ(x) = arg min
w

G(w) + 1
2λ‖w − x‖22. (11)

When G is the `1 norm, Sλ is known as soft thresholding.
More generally, we will consider the following mappings for

Fig. 1: Plots of g = gp, where Gp(w) =
∑

i gp(|wi|) is the penalty having Sp

in (12) for a proximal mapping. gp(|w|) grows like |w|p/p + C, but has different
behavior from a pth power function near w = 0.

p ≤ 1, defined componentwise:

Sλp (x)i = max{0, |xi| − λ2−p|xi|p−1} sign(xi). (12)

Then soft thresholding is the case of p = 1. For p < 1, we
use (11) to define G = Gp, where we use S = Sp. The
details of how Gp can be so constructed are in [29] (see also
[17]). The resulting penalty function Gp can be regarded as
a modification of the `p norm (to the pth power), with the
modification being for the purpose of having a simple proximal
mapping for use in (8) (a property the `p norm itself does not
have). We do not have a formula for Gp for general p, but
we do not need one for our algorithm. We can compute Gp
numerically, with plots of the 1-D case in Fig. 1.

C. Chambolle-Pock

In [30], Chambolle and Pock develop an approach that
can applied fairly broadly to convex minimization problems,
and can be seen as generalizations of earlier work [31],
[32]. Underlying the approach is the incorporation of duality.
Consider (1) with G being the `1 norm. Duality gives us the
following “saddle-point” expression:

min
x
‖∇x‖1+µ

2 ‖Ax−b‖
2
2 = min

x
max
‖y‖∞≤1

〈∇x,y〉+µ
2 ‖Ax−b‖

2
2.

(13)
Since 〈∇x,y〉 = 〈x,∇Ty〉, each x and y can be considered
without the presence of an analysis operator. Then proximal
gradient methods can be applied, leading to a primal-dual
algorithm.

The Chambolle-Pock framework can only be directly ap-
plied to convex problems. We consider the case of G being
the `p norm (to the pth power) by iteratively reweighting the
`1 norm:

min
x

∑
i

wi|(∇x)i|+ µ
2 ‖Ax− b‖22

= min
x

max
∀i(|yi|≤wi)

〈∇x,y〉+ µ
2 ‖Ax− b‖22,

with wi = |(∇xn)i|p−1, computed from the previous iterate.
We obtain better results by considering the constrained

formulation (1). This can be handled within the Chambolle-
Pock framework by using an indicator function:

min
x
‖∇x‖pp + δ{x:‖Ax−b‖2≤σ}(x), (14)



(a) 512× 512 (b) enhanced contrast (c) 16× zoom

Fig. 2: The breast tissue phantom used in our experiments. In (b) the display window is
narrowed to show the soft tissues, while (c) zooms in on the microcalcifications.

where the indicator function δ gives x the value 0 if x is
feasible, otherwise +∞. Referring to [30, p. 121], the entire
functional in (14) becomes F (Kx) (with K being a stack of
A and ∇), while their G is identically zero.

Combining these ingredients, we arrive at the following
iteration, first appearing in [33]. Since we solve a constrained
problem for minimizing a “total p-variation,” we refer to the
algorithm as CTpV.

yn+1 = proxασ ‖ · ‖2(yn + α(Axn − b)), (15)

wn+1 =
(√
|∇xn|2 + ε2/ε

)p−1
, (16)

zn+1
i = PB∞(λwn+1

i /νi)
(zni + αν(∇xn)i), (17)

xn+1/2 = xn−1/2 − β(ATyn+1 + ν∇T zn+1), (18)

xn+1 = xn+1/2 + θ(xn+1/2 − xn−1/2); (19)

where proxµ ‖ · ‖2(y) = max{‖y‖2−µ, 0}y/‖y‖2, the prox-
imal mapping of the `2 norm. The second step incorporates
an ε > 0 both to avoid division by zero and provide some
regularity. The third step uses orthogonal projection onto the
`∞ ball of the specified radius. The iteration is provably
convergent only when p = 1, or with fixed weights.

III. NUMERICAL EXPERIMENTS

We consider the synthetic breast-tissue phantom in Fig. 2.
It is an instance of a probabilistic model from [34]. Present
are fat, fibroglandular tissue, skin, and microcalcifications. It
is discretized on a 512×512 grid measuring 18 cm on a side.
We call the vectorized phantom x∗.

Our X-ray transform A implements a 2-D fanbeam trans-
form. The source is 36 cm from the center of the object,
and 72 cm from the center of the detector. The detector is
linear with 1024 bins and total length 36 cm. The transform
is right-multiplied by a diagonal matrix of 0s and 1s, with 0s
corresponding to pixels whose centers are outside the circle
inscribed in the grid, as only the pixels in this circle are
allowed to vary. (Note that this circle is larger than the support
of the object.) The resulting A is constructed in Matlab as a
sparse matrix, using code provided to the author by Jakob S.
Jørgensen as a supplement to AIR Tools [35].

Our gradient operator ∇ is a discrete, finite-difference
approximation. We use simple forward differencing in each
dimension. It is implemented using a pair of sparse matrices,
one for the derivative in each dimension. Each is masked in the
same manner as A, to ensure only the pixels in the inscribed

circle can vary. This also has the effect of making boundary
conditions for the finite differencing irrelevant.

A. Noise-free case

First we consider the ideal-data case, where b = Ax∗. This
is to investigate the algorithms’ capabilities with regard to
limited views, independently from other confounding issues.
We present results for A corresponding to 30, 35, 40, and 45
views, all equally spaced in [0, 2π]. The choice was informed
by the results: 45 is sufficiently many views to make a high-
quality reconstruction possible using all considered values of
p, while 25 views was not found to be sufficient in any case.

In this ideal case, our objective it to obtain an essentially
perfect reconstruction. We regard a reconstruction SNR of
50 dB as sufficiently high quality to meet this objective. We
compare the three algorithms according to whether they attain
our reconstruction threshold, and if so, in how much time. The
computations are done in Matlab on a common workstation.
We consider p ∈ {1/4, 1/2, 3/4, 1}. Each algorithm has two
parameters to choose: µ and ε for IRLS, µ and λ for ADMM,
and λ and ε for CTpV. (The other CTpV parameters α, β,
θ, ν, and σ all can be chosen a priori as described in [33].)
The parameters are chosen to optimize the reconstruction time.
For ADMM and CTpV, the parameters are chosen with a two-
dimensional, logarithmic grid search, with grid spacing 100.1.
For IRLS in the noise-free case, this is not possible, as both
parameters must be adapted with a continuation strategy as
the iteration proceeds. Reasonable parameter sequences were
sought, generally with factor of 10 increases in µ and decreases
in ε, but it was infeasible to consider all possibilities, so no
claim of optimality can be made.

The results are in Table I. We see that the results for
CTpV are uniformly better than those for ADMM and IRLS.
Reconstruction was successful for CTpV except in cases where
it could not have possibly succeeded because not enough
measurements were made for the phantom to be the minimizer
of the optimization problem (these cases being p = 1 with 40
or fewer views). Results across all algorithms were generally
better for p = 1/2 or p = 3/4. IRLS both failed in the
most cases, and took longest where it succeeded. ADMM
was mostly as reliable as CTpV, but much slower, some-
thing exacerbated by its tendency to oscillate. Note that both
IRLS and ADMM require a linear system to be solved at
each iteration, while CTpV does not, this perhaps being the
main reason for the much faster times. (In smaller problems,
ADMM can benefit from having the system matrix in (7) being
fixed, allowing a single Cholesky factorization, with only a
backsubstitution necessary at each iteration. In this case, ATA,
being dense, is too large to construct, let alone factor.)

B. Noisy case

For the noisy case, A corresponds to 50 views. We apply
synthetic Poisson noise to simulated exponential attenuation
data. That is, we compute exp(−αAx∗), apply Poisson noise
to obtain detector data d, then compute b = − log(d)/α. The
scaling constant α is computed so that the total incident photon



IRLS ADMM CTpV
views 1/4 1/2 3/4 1 1/4 1/2 3/4 1 1/4 1/2 3/4 1

45 fail 471 2066 fail 661 373 292 229485 136 116 116 6212
40 fail 907 2992 break 851 535 431 break 170 150 139 break
35 fail 1476 6593 break 842 548 722 break 198 171 153 break
30 fail fail fail break 1555 1272 fail break 320 296 292 break

TABLE I: Time in seconds to reconstruct to an SNR of 50 dB, for three different algorithms, four values of p, and four numbers of views. ‘break’ indicates the solution proved
that the phantom is not the global minimizer, by having a lower objective value and being feasible. ‘fail’ indicates the algorithm failed to reconstruct the phantom sufficiently well,
without the solution having a lower objective value. The CTpV algorithm was fastest for every number of views (table entries indicated in bold), as well as fastest for any particular
value of p, while also only failing in cases where the phantom was demonstrably not the minimizer of the optimization problem.

time (s) SNR (dB)
p IRLS ADMM CTpV IRLS ADMM CTpV

1/4 479 1404 149 26.2 26.0 27.1
1/2 402 1407 83 26.7 25.9 27.1
3/4 358 1438 156 26.8 25.8 26.8
1 384 1336 131 26.0 25.4 26.0

TABLE II: Reconstruction times and SNRs for the noisy-data case. CTpV results have
best SNR, and by far the fastest times. Quality is mostly better with smaller p, while
p = 1/2 or 3/4 gives the fastest times.

flux is 264,000 photons per view. Note that this is four times
as many photons per view as in [33], which used 200 views,
keeping the total number of photons the same, and equivalent
to two-view, full-field digital mammography [36].

The experiments were conducted similarly to the noise-
free case, with a few exceptions. In the absence of a task
for which the images will be used, parameters were chosen
to produce the highest SNR over the whole image. Due to
the softer constraint, continuation on µ was not found to be
necessary for IRLS, so the same logarithmic grid search as in
Sec. III-A was done for µ. For CTpV, the inequality constraint
parameter σ now also must be chosen. Since our focus is on
algorithm capabilities, the initial value for σ was the oracle
value ‖Ax∗ − b‖2. Then the 2-D parameter search for λ and
ε was conducted as in the noise-free case. Finally, with λ and
ε fixed, σ was varied in 5% increments, though in all but the
p = 1 case the improvement was negligible.

Results are in Table II and Fig. 3. While the SNRs do
not vary much, CTpV does give the best values. They also
give the best subjective appearance: ADMM results appear
noisier, while IRLS is blockier with small p. Small artifacts
appear present for p = 1 with IRLS and CTpV. In Fig. 4
we see the zoom on the microcalcifications, while noting that
the parameters were not chosen specifically for this region
of interest. Results are mostly better with small p, and with
ADMM not doing as well as the other two algorithms. CTpV
is by far the fastest. This time, IRLS is second fastest, having
less trouble with the softer constraint.

For comparison, in Fig. 5 we see the result of using the
classical Kaczmarz algorithm [37], using AIR Tools [35]. The
result is noisy, with a much lower SNR of 16.0 dB. The
reconstruction took 932 seconds, better than ADMM but much
slower than CTpV or IRLS.

IV. CONCLUSION

Of the three algorithms considered, CTpV produced by far
the fastest convergence, while also giving somewhat better
robustness to noise. The results also show that the use of
nonconvex penalty functions gives better results, though our
results do not point to an optimal value of p.

Fig. 3: Reconstructed images, with a uniform display window. The columns are the
results using IRLS, ADMM, and CTpV, with the rows being p values of 1/4, 1/2, 3/4,
and 1. ADMM results are noisiest, with IRLS blockier for small p. CTpV gives best
balance of noise reduction without blockiness. (Best viewed electronically.)
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